Book Image

Deep Learning for Time Series Cookbook

By : Vitor Cerqueira, Luís Roque
Book Image

Deep Learning for Time Series Cookbook

By: Vitor Cerqueira, Luís Roque

Overview of this book

Most organizations exhibit a time-dependent structure in their processes, including fields such as finance. By leveraging time series analysis and forecasting, these organizations can make informed decisions and optimize their performance. Accurate forecasts help reduce uncertainty and enable better planning of operations. Unlike traditional approaches to forecasting, deep learning can process large amounts of data and help derive complex patterns. Despite its increasing relevance, getting the most out of deep learning requires significant technical expertise. This book guides you through applying deep learning to time series data with the help of easy-to-follow code recipes. You’ll cover time series problems, such as forecasting, anomaly detection, and classification. This deep learning book will also show you how to solve these problems using different deep neural network architectures, including convolutional neural networks (CNNs) or transformers. As you progress, you’ll use PyTorch, a popular deep learning framework based on Python to build production-ready prediction solutions. By the end of this book, you'll have learned how to solve different time series tasks with deep learning using the PyTorch ecosystem.
Table of Contents (12 chapters)

Training a feedforward neural network

This recipe walks you through the process of building a feedforward neural network using PyTorch.

Getting ready

Feedforward neural networks, also known as multilayer perceptrons (MLPs), are one of the simplest types of artificial neural networks. The data flows from the input layer to the output layer, passing through hidden layers without any loop. In this type of neural network, all hidden units in one layer are connected to the units of the following layer.

How to do it…

Let’s create a simple feedforward neural network using PyTorch. First, we need to import the necessary PyTorch modules:

import torch
import torch.nn as nn

Now, we can define a simple feedforward neural network with one hidden layer:

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(10...