Book Image

Deep Learning for Time Series Cookbook

By : Vitor Cerqueira, Luís Roque
Book Image

Deep Learning for Time Series Cookbook

By: Vitor Cerqueira, Luís Roque

Overview of this book

Most organizations exhibit a time-dependent structure in their processes, including fields such as finance. By leveraging time series analysis and forecasting, these organizations can make informed decisions and optimize their performance. Accurate forecasts help reduce uncertainty and enable better planning of operations. Unlike traditional approaches to forecasting, deep learning can process large amounts of data and help derive complex patterns. Despite its increasing relevance, getting the most out of deep learning requires significant technical expertise. This book guides you through applying deep learning to time series data with the help of easy-to-follow code recipes. You’ll cover time series problems, such as forecasting, anomaly detection, and classification. This deep learning book will also show you how to solve these problems using different deep neural network architectures, including convolutional neural networks (CNNs) or transformers. As you progress, you’ll use PyTorch, a popular deep learning framework based on Python to build production-ready prediction solutions. By the end of this book, you'll have learned how to solve different time series tasks with deep learning using the PyTorch ecosystem.
Table of Contents (12 chapters)

Handling seasonality – seasonal differencing

In this recipe, we show how differencing can be used to model seasonal patterns in time series.

Getting ready

We’ve learned to use first differences to remove the trend from time series. Differencing can also work for seasonality. But, instead of taking the difference between consecutive observations, for each point, you subtract the value of the previous observation from the same season. For example, suppose you’re modeling monthly data. You perform seasonal differencing by subtracting the value of February of the previous year from the value of February of the current year.

The process is similar to what we did with first differences to remove the trend. Let’s start by loading the data:

time_series = df["Incoming Solar"]
train, test = train_test_split(time_series, test_size=0.2, shuffle=False)

In this recipe, we’ll use seasonal differencing to remove yearly seasonality.

How...