Book Image

Deep Learning for Time Series Cookbook

By : Vitor Cerqueira, Luís Roque
Book Image

Deep Learning for Time Series Cookbook

By: Vitor Cerqueira, Luís Roque

Overview of this book

Most organizations exhibit a time-dependent structure in their processes, including fields such as finance. By leveraging time series analysis and forecasting, these organizations can make informed decisions and optimize their performance. Accurate forecasts help reduce uncertainty and enable better planning of operations. Unlike traditional approaches to forecasting, deep learning can process large amounts of data and help derive complex patterns. Despite its increasing relevance, getting the most out of deep learning requires significant technical expertise. This book guides you through applying deep learning to time series data with the help of easy-to-follow code recipes. You’ll cover time series problems, such as forecasting, anomaly detection, and classification. This deep learning book will also show you how to solve these problems using different deep neural network architectures, including convolutional neural networks (CNNs) or transformers. As you progress, you’ll use PyTorch, a popular deep learning framework based on Python to build production-ready prediction solutions. By the end of this book, you'll have learned how to solve different time series tasks with deep learning using the PyTorch ecosystem.
Table of Contents (12 chapters)

LSTM neural networks for multivariate time series forecasting

In this recipe, we’ll continue the process of building a model to predict the next value of solar radiation using multivariate time series. This time, we’ll train an LSTM recurrent neural network to solve this task.

Getting ready

The data setup is similar to what we did in the previous recipe. So, we’ll use the same data module we defined there. Now, let’s learn how to build an LSTM neural network with a LightningModule class.

How to do it…

The workflow for training an LSTM neural network with PyTorch Lightning is similar, with one small but important detail. For LSTM models, we keep the input data in a three-dimensional structure with a shape of (number of samples, number of lags, number of features). Here’s what the module looks like, starting with the constructor and the forward() method:

class MultivariateLSTM(pl.LightningModule):
    def __init__...