Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying LLM Engineer's Handbook
  • Table Of Contents Toc
  • Feedback & Rating feedback
LLM Engineer's Handbook

LLM Engineer's Handbook

By : Paul Iusztin, Maxime Labonne
4.9 (28)
close
close
LLM Engineer's Handbook

LLM Engineer's Handbook

4.9 (28)
By: Paul Iusztin, Maxime Labonne

Overview of this book

Artificial intelligence has undergone rapid advancements, and Large Language Models (LLMs) are at the forefront of this revolution. This LLM book offers insights into designing, training, and deploying LLMs in real-world scenarios by leveraging MLOps best practices. The guide walks you through building an LLM-powered twin that’s cost-effective, scalable, and modular. It moves beyond isolated Jupyter notebooks, focusing on how to build production-grade end-to-end LLM systems. Throughout this book, you will learn data engineering, supervised fine-tuning, and deployment. The hands-on approach to building the LLM Twin use case will help you implement MLOps components in your own projects. You will also explore cutting-edge advancements in the field, including inference optimization, preference alignment, and real-time data processing, making this a vital resource for those looking to apply LLMs in their projects. By the end of this book, you will be proficient in deploying LLMs that solve practical problems while maintaining low-latency and high-availability inference capabilities. Whether you are new to artificial intelligence or an experienced practitioner, this book delivers guidance and practical techniques that will deepen your understanding of LLMs and sharpen your ability to implement them effectively.
Table of Contents (15 chapters)
close
close
13
Other Books You May Enjoy
14
Index

MLOps and LLMOps tooling

This section will quickly present all the MLOps and LLMOps tools we will use throughout the book and their role in building ML systems using MLOps best practices. At this point in the book, we don’t aim to detail all the MLOps components we will use to implement the LLM Twin use case, such as model registries and orchestrators, but only provide a quick idea of what they are and how to use them. As we develop the LLM Twin project throughout the book, you will see hands-on examples of how we use all these tools. In Chapter 11, we will dive deeply into the theory of MLOps and LLMOps and connect all the dots. As the MLOps and LLMOps fields are highly practical, we will leave the theory of these aspects to the end, as it will be much easier to understand it after you go through the LLM Twin use case implementation.

Also, this section is not dedicated to showing you how to set up each tool. It focuses primarily on what each tool is used for and highlights...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
LLM Engineer's Handbook
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon