Book Image

Machine Learning Engineering with Python - Second Edition

By : Andrew P. McMahon
2.5 (2)
Book Image

Machine Learning Engineering with Python - Second Edition

2.5 (2)
By: Andrew P. McMahon

Overview of this book

The Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field. The book takes an examples-based approach to help you develop your skills and covers the technical concepts, implementation patterns, and development methodologies you need. You'll explore the key steps of the ML development lifecycle and create your own standardized "model factory" for training and retraining of models. You'll learn to employ concepts like CI/CD and how to detect different types of drift. Get hands-on with the latest in deployment architectures and discover methods for scaling up your solutions. This edition goes deeper in all aspects of ML engineering and MLOps, with emphasis on the latest open-source and cloud-based technologies. This includes a completely revamped approach to advanced pipelining and orchestration techniques. With a new chapter on deep learning, generative AI, and LLMOps, you will learn to use tools like LangChain, PyTorch, and Hugging Face to leverage LLMs for supercharged analysis. You will explore AI assistants like GitHub Copilot to become more productive, then dive deep into the engineering considerations of working with deep learning.
Table of Contents (12 chapters)
10
Other Books You May Enjoy
11
Index

High-level ML system design

When you get down to the nuts and bolts of building your solution, there are so many options for tools, tech, and approaches that it can be very easy to be overwhelmed. However, as alluded to in the previous sections, a lot of this complexity can be abstracted to understand the bigger picture via some back-of-the-envelope architecture and designs. This is always a useful exercise once you know what problem you will try and solve, and it is something I recommend doing before you make any detailed choices about implementation.

To give you an idea of how this works in practice, what follows are a few worked-through examples where a team has to create a high-level ML systems design for some typical business problems. These problems are similar to ones I have encountered before and will likely be similar to ones you will encounter in your own work.

Example 1: Batch anomaly detection service

You work for a tech-savvy taxi ride company with a fleet...