Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Redis Stack for Application Modernization
  • Table Of Contents Toc
Redis Stack for Application Modernization

Redis Stack for Application Modernization

By : Luigi Fugaro, Ortensi
5 (2)
close
close
Redis Stack for Application Modernization

Redis Stack for Application Modernization

5 (2)
By: Luigi Fugaro, Ortensi

Overview of this book

In modern applications, efficiency in both operational and analytical aspects is paramount, demanding predictable performance across varied workloads. This book introduces you to Redis Stack, an extension of Redis and guides you through its broad data modeling capabilities. With practical examples of real-time queries and searches, you’ll explore Redis Stack’s new approach to providing a rich data modeling experience all within the same database server. You’ll learn how to model and search your data in the JSON and hash data types and work with features such as vector similarity search, which adds semantic search capabilities to your applications to search for similar texts, images, or audio files. The book also shows you how to use the probabilistic Bloom filters to efficiently resolve recurrent big data problems. As you uncover the strengths of Redis Stack as a data platform, you’ll explore use cases for managing database events and leveraging introduce stream processing features. Finally, you’ll see how Redis Stack seamlessly integrates into microservices architectures, completing the picture. By the end of this book, you’ll be equipped with best practices for administering and managing the server, ensuring scalability, high availability, data integrity, stored functions, and more.
Table of Contents (18 chapters)
close
close
1
Part 1: Introduction to Redis Stack
6
Part 2: Data Modeling
11
Part 3: From Development to Production

Aggregation framework

The Redis Stack for Time Series aggregation framework provides functions that enable users to perform operations such as calculating the average, sum, minimum, maximum, count, or standard deviation of data points, within a specific time bucket or range. By using these functions, you can derive insights, detect trends, and analyze patterns in your time-series data more effectively.

The following is a list of aggregation functions:

  • avg: Calculates the average (mean) value of data points within a specified time bucket or range. It is useful for analyzing and summarizing time-series data to understand trends and patterns over time.
  • sum: Calculates the total (sum) of data points within a specified time bucket or range. It is useful for aggregating time-series data to understand the cumulative effect or total value of the data points over time.
  • min: Calculates the minimum value of data points within a specified time bucket or range. It is useful for...
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Redis Stack for Application Modernization
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon