Book Image

Deep Learning for Natural Language Processing

By : Karthiek Reddy Bokka, Shubhangi Hora, Tanuj Jain, Monicah Wambugu
Book Image

Deep Learning for Natural Language Processing

By: Karthiek Reddy Bokka, Shubhangi Hora, Tanuj Jain, Monicah Wambugu

Overview of this book

Applying deep learning approaches to various NLP tasks can take your computational algorithms to a completely new level in terms of speed and accuracy. Deep Learning for Natural Language Processing starts by highlighting the basic building blocks of the natural language processing domain. The book goes on to introduce the problems that you can solve using state-of-the-art neural network models. After this, delving into the various neural network architectures and their specific areas of application will help you to understand how to select the best model to suit your needs. As you advance through this deep learning book, you’ll study convolutional, recurrent, and recursive neural networks, in addition to covering long short-term memory networks (LSTM). Understanding these networks will help you to implement their models using Keras. In later chapters, you will be able to develop a trigger word detection application using NLP techniques such as attention model and beam search. By the end of this book, you will not only have sound knowledge of natural language processing, but also be able to select the best text preprocessing and neural network models to solve a number of NLP issues.
Table of Contents (11 chapters)

Chunking

POS taggers work on individual tokens of words. Tagging individual words isn't always the best way to understand corpora, though. For example, the words 'United' and 'Kingdom' don't make a lot of sense when they're separated, but 'United Kingdom' together tells the machine that this is a country, thus providing it with more context and information. This is where the process of chunking comes into the picture.

Chunking is an algorithm that takes words and their POS tags as input. It processes these individual tokens and their tags to see whether they can be combined. The combination of one or more individual tokens is known as a chunk, and the POS tag assigned to such a chunk is known as a chunk tag.

Chunk tags are combinations of basic POS tags. They are easier to define phrases by and are more efficient than simple POS tags. These phrases are chunks. There will be instances where a single word is considered a chunk and assigned a chunk...