Book Image

PyTorch 1.x Reinforcement Learning Cookbook

By : Yuxi (Hayden) Liu
Book Image

PyTorch 1.x Reinforcement Learning Cookbook

By: Yuxi (Hayden) Liu

Overview of this book

Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has also emerged as the preferred tool for training RL models because of its efficiency and ease of use. With this book, you'll explore the important RL concepts and the implementation of algorithms in PyTorch 1.x. The recipes in the book, along with real-world examples, will help you master various RL techniques, such as dynamic programming, Monte Carlo simulations, temporal difference, and Q-learning. You'll also gain insights into industry-specific applications of these techniques. Later chapters will guide you through solving problems such as the multi-armed bandit problem and the cartpole problem using the multi-armed bandit algorithm and function approximation. You'll also learn how to use Deep Q-Networks to complete Atari games, along with how to effectively implement policy gradients. Finally, you'll discover how RL techniques are applied to Blackjack, Gridworld environments, internet advertising, and the Flappy Bird game. By the end of this book, you'll have developed the skills you need to implement popular RL algorithms and use RL techniques to solve real-world problems.
Table of Contents (11 chapters)

Developing Q-learning with neural network function approximation

As we mentioned before, we can also use neural networks as the approximating function. In this recipe, we will solve theMountain Car environment using Q-learning with neural networks for approximation.

The goal of FA is to use a set of features to estimate the Q values via a regression model. Using neural networks as the estimation model, we increase the regression power by adding flexibility (multiple layers in neural networks) and non-linearity introduced by non-linear activation in hidden layers. The remaining part of the Q-learning model is very similar to the one with linear approximation. We also use gradient descent to train the network. The ultimate goal of learning is to find the optimal weights of the network to best approximate the state-value function, V(s), for each possible action. The loss function...