Book Image

PyTorch 1.x Reinforcement Learning Cookbook

By : Yuxi (Hayden) Liu
Book Image

PyTorch 1.x Reinforcement Learning Cookbook

By: Yuxi (Hayden) Liu

Overview of this book

Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has also emerged as the preferred tool for training RL models because of its efficiency and ease of use. With this book, you'll explore the important RL concepts and the implementation of algorithms in PyTorch 1.x. The recipes in the book, along with real-world examples, will help you master various RL techniques, such as dynamic programming, Monte Carlo simulations, temporal difference, and Q-learning. You'll also gain insights into industry-specific applications of these techniques. Later chapters will guide you through solving problems such as the multi-armed bandit problem and the cartpole problem using the multi-armed bandit algorithm and function approximation. You'll also learn how to use Deep Q-Networks to complete Atari games, along with how to effectively implement policy gradients. Finally, you'll discover how RL techniques are applied to Blackjack, Gridworld environments, internet advertising, and the Flappy Bird game. By the end of this book, you'll have developed the skills you need to implement popular RL algorithms and use RL techniques to solve real-world problems.
Table of Contents (11 chapters)

Developing double deep Q-Networks

In the deep Q-learning algorithms we have developed so far, the same neural network is used to calculate the predicted values and the target values. This may cause a lot of divergence as the target values keep on changing and the prediction has to chase it. In this recipe, we will develop a new algorithm using two neural networks instead of one.

In double DQNs, we use a separate network to estimate the target rather than the prediction network. The separate network has the same structure as the prediction network. And its weights are fixed for every T episode (T is a hyperparameter we can tune), which means they are only updated after every T episode. The update is simply done by copying the weights of the prediction network. In this way, the target function is fixed for a while, which results in a more stable training process.

Mathematically...