Book Image

PyTorch 1.x Reinforcement Learning Cookbook

By : Yuxi (Hayden) Liu
Book Image

PyTorch 1.x Reinforcement Learning Cookbook

By: Yuxi (Hayden) Liu

Overview of this book

Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has also emerged as the preferred tool for training RL models because of its efficiency and ease of use. With this book, you'll explore the important RL concepts and the implementation of algorithms in PyTorch 1.x. The recipes in the book, along with real-world examples, will help you master various RL techniques, such as dynamic programming, Monte Carlo simulations, temporal difference, and Q-learning. You'll also gain insights into industry-specific applications of these techniques. Later chapters will guide you through solving problems such as the multi-armed bandit problem and the cartpole problem using the multi-armed bandit algorithm and function approximation. You'll also learn how to use Deep Q-Networks to complete Atari games, along with how to effectively implement policy gradients. Finally, you'll discover how RL techniques are applied to Blackjack, Gridworld environments, internet advertising, and the Flappy Bird game. By the end of this book, you'll have developed the skills you need to implement popular RL algorithms and use RL techniques to solve real-world problems.
Table of Contents (11 chapters)

Deploying the model and playing the game

Now that we've trained the DQN model, let's apply it to play the Flappy Bird game.

Playing the game with the trained model is simple. We will just take the action associated with the highest value in each step. We will play a few episodes to see how it performs. Don’t forget to preprocess the raw screen image and construct the state.

How to do it...

We test the DQN model on new episodes as follows:

  1. We first load the final model:
>>> model = torch.load("{}/final".format(saved_path))
  1. We run 100 episodes, and we perform the following for each episode:
>>> n_episode = 100
>>> for episode in range(n_episode):

... env = FlappyBird...