Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying PyTorch 1.x Reinforcement Learning Cookbook
  • Table Of Contents Toc
  • Feedback & Rating feedback
PyTorch 1.x Reinforcement Learning Cookbook

PyTorch 1.x Reinforcement Learning Cookbook

By : Yuxi (Hayden) Liu
4.3 (3)
close
close
PyTorch 1.x Reinforcement Learning Cookbook

PyTorch 1.x Reinforcement Learning Cookbook

4.3 (3)
By: Yuxi (Hayden) Liu

Overview of this book

Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has also emerged as the preferred tool for training RL models because of its efficiency and ease of use. With this book, you'll explore the important RL concepts and the implementation of algorithms in PyTorch 1.x. The recipes in the book, along with real-world examples, will help you master various RL techniques, such as dynamic programming, Monte Carlo simulations, temporal difference, and Q-learning. You'll also gain insights into industry-specific applications of these techniques. Later chapters will guide you through solving problems such as the multi-armed bandit problem and the cartpole problem using the multi-armed bandit algorithm and function approximation. You'll also learn how to use Deep Q-Networks to complete Atari games, along with how to effectively implement policy gradients. Finally, you'll discover how RL techniques are applied to Blackjack, Gridworld environments, internet advertising, and the Flappy Bird game. By the end of this book, you'll have developed the skills you need to implement popular RL algorithms and use RL techniques to solve real-world problems.
Table of Contents (11 chapters)
close
close

Preface

The surge in interest in reinforcement learning is due to the fact that it revolutionizes automation by learning the optimal actions to take in an environment in order to maximize the notion of cumulative reward.

PyTorch 1.x Reinforcement Learning Cookbook introduces you to important reinforcement learning concepts and implementations of algorithms in PyTorch. Each chapter of the book walks you through a different type of reinforcement learning method and its industry-adopted applications. With the help of recipes that contain real-world examples, you will find it intriguing to enhance your knowledge and proficiency of reinforcement learning techniques in areas such as dynamic programming, Monte Carlo methods, temporal difference and Q-learning, multi-armed bandit, function approximation, deep Q-Networks, and policy gradients—they are no more obscure than you thought. Interesting and easy-to-follow examples, such as Atari games, Blackjack, Gridworld environments, internet advertising, Mountain Car, and Flappy Bird, will keep you interested until you reach your goal.

By the end of this book, you will have mastered the implementation of popular reinforcement learning algorithms and learned the best practices of applying reinforcement learning techniques to solve other real-world problems.

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
PyTorch 1.x Reinforcement Learning Cookbook
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon