Book Image

Hands-On Genetic Algorithms with Python

By : Eyal Wirsansky
Book Image

Hands-On Genetic Algorithms with Python

By: Eyal Wirsansky

Overview of this book

Genetic algorithms are a family of search, optimization, and learning algorithms inspired by the principles of natural evolution. By imitating the evolutionary process, genetic algorithms can overcome hurdles encountered in traditional search algorithms and provide high-quality solutions for a variety of problems. This book will help you get to grips with a powerful yet simple approach to applying genetic algorithms to a wide range of tasks using Python, covering the latest developments in artificial intelligence. After introducing you to genetic algorithms and their principles of operation, you'll understand how they differ from traditional algorithms and what types of problems they can solve. You'll then discover how they can be applied to search and optimization problems, such as planning, scheduling, gaming, and analytics. As you advance, you'll also learn how to use genetic algorithms to improve your machine learning and deep learning models, solve reinforcement learning tasks, and perform image reconstruction. Finally, you'll cover several related technologies that can open up new possibilities for future applications. By the end of this book, you'll have hands-on experience of applying genetic algorithms in artificial intelligence as well as in numerous other domains.
Table of Contents (18 chapters)
1
Section 1: The Basics of Genetic Algorithms
4
Section 2: Solving Problems with Genetic Algorithms
9
Section 3: Artificial Intelligence Applications of Genetic Algorithms
14
Section 4: Related Technologies

Understanding elitism

While the average fitness of the genetic algorithm population generally increases as generations go by, it is possible at any point that the best individual(s) of the current generation will be lost. This is due to the selection, crossover, and mutation operators altering the individuals in the process of creating the next generation. In many cases, the loss is temporary as these individuals (or better individuals) will be re-introduced into the population in a future generation.

However, if we want to guarantee that the best individual(s) always make it to the next generation, we can apply the optional elitism strategy. This means that the top n individuals (n being a small, predefined parameter) are duplicated into the next generation before we fill the rest of the available spots with offspring that are created using selection, crossover, and mutation...