Book Image

Deep Learning for Beginners

By : Dr. Pablo Rivas
Book Image

Deep Learning for Beginners

By: Dr. Pablo Rivas

Overview of this book

With information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started. The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book. By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks.
Table of Contents (20 chapters)
1
Section 1: Getting Up to Speed
8
Section 2: Unsupervised Deep Learning
13
Section 3: Supervised Deep Learning

Exploring latent spaces with deep autoencoders

Latent spaces, as we defined them in Chapter 7, Autoencoders, are very important in DL because they can lead to powerful decision-making systems that are based on assumed rich latent representations. And, once again, what makes the latent spaces produced by autoencoders (and other unsupervised models) rich in their representations is that they are not biased toward particular labels.

In Chapter 7, Autoencoders, we explored the MNIST dataset, which is a standard dataset in DL, and showed that we can easily find very good latent representations with as few as four dense layers in the encoder and eight layers for the entire autoencoder model. In the next section, we will take on a much more difficult dataset known as CIFAR-10, and then we will come back to explore the latent representation of the IMDB dataset, which we have already explored briefly in the previous sections of this chapter.

CIFAR-10

In 2009, the Canadian Institute for Advanced...