Book Image

Deep Learning for Beginners

By : Dr. Pablo Rivas
Book Image

Deep Learning for Beginners

By: Dr. Pablo Rivas

Overview of this book

With information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started. The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book. By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks.
Table of Contents (20 chapters)
1
Section 1: Getting Up to Speed
8
Section 2: Unsupervised Deep Learning
13
Section 3: Supervised Deep Learning

Sparse deep neural networks

A sparse network can be defined as sparse in different aspects of its architecture (Gripon, V., and Berrou, C., 2011). However, the specific type of sparseness we'll look into in this section is the sparseness obtained with respect to the weights of the network, that is, its parameters. We will be looking at each specific parameter to see if it is relatively close to zero (computationally speaking).

Currently, there are three ways of imposing weight sparseness in Keras over Tensorflow, and they are related to the concept of a vector norm. If we look at the Manhattan norm, , or the Euclidean norm, , they are defined as follows:

,

Here, n is the number of elements in the vector . As you can see, in simple terms, the -norm adds up all elements in terms of their absolute value, while the -norm does it in terms of their squared values. It is evident that if both norms are close to zero, , the chances are that most of its elements are zero or close to zero...