Book Image

Deep Learning for Beginners

By : Dr. Pablo Rivas
Book Image

Deep Learning for Beginners

By: Dr. Pablo Rivas

Overview of this book

With information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started. The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book. By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks.
Table of Contents (20 chapters)
1
Section 1: Getting Up to Speed
8
Section 2: Unsupervised Deep Learning
13
Section 3: Supervised Deep Learning

A perceptron over non-linearly separable data

As we have discussed before, a perceptron will find a solution in finite time if the data is separable. However, how many iterations it will take to find a solution depends on how close the groups are to each other in the feature space.

Convergence is when the learning algorithm finds a solution or reaches a steady state that is acceptable to the designer of the learning model.

The following paragraphs will deal with convergence on different types of data: linearly separable and non-linearly separable.

Convergence on linearly separable data

For the particular dataset that we have been studying in this chapter, the separation between the two groups of data is a parameter that can be varied (this is usually a problem with real data). The parameter is class_sep and can take on a real number; for example:

X, y = make_classification(..., class_sep=2.0, ...)

This allows us to study how many iterations it takes, on average, for the perceptron algorithm...