Book Image

Natural Language Processing with TensorFlow - Second Edition

By : Thushan Ganegedara
2 (1)
Book Image

Natural Language Processing with TensorFlow - Second Edition

2 (1)
By: Thushan Ganegedara

Overview of this book

Learning how to solve natural language processing (NLP) problems is an important skill to master due to the explosive growth of data combined with the demand for machine learning solutions in production. Natural Language Processing with TensorFlow, Second Edition, will teach you how to solve common real-world NLP problems with a variety of deep learning model architectures. The book starts by getting readers familiar with NLP and the basics of TensorFlow. Then, it gradually teaches you different facets of TensorFlow 2.x. In the following chapters, you then learn how to generate powerful word vectors, classify text, generate new text, and generate image captions, among other exciting use-cases of real-world NLP. TensorFlow has evolved to be an ecosystem that supports a machine learning workflow through ingesting and transforming data, building models, monitoring, and productionization. We will then read text directly from files and perform the required transformations through a TensorFlow data pipeline. We will also see how to use a versatile visualization tool known as TensorBoard to visualize our models. By the end of this NLP book, you will be comfortable with using TensorFlow to build deep learning models with many different architectures, and efficiently ingest data using TensorFlow Additionally, you’ll be able to confidently use TensorFlow throughout your machine learning workflow.
Table of Contents (15 chapters)
12
Other Books You May Enjoy
13
Index

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a special family of neural networks that are designed to cope with sequential data (that is, time-series data), such as stock market prices or a sequence of texts (for example, variable-length sentences). RNNs maintain a state variable that captures the various patterns present in sequential data; therefore, they are able to model sequential data. In comparison, conventional feed-forward neural networks do not have this ability unless the data is represented with a feature representation that captures the important patterns present in the sequence. However, coming up with such feature representations is extremely difficult. Another alternative for feed-forward models to model sequential data is to have a separate set of parameters for each position in time/sequence so that the set of parameters assigned to a certain position learns about the patterns that occur at that position. This will greatly increase the memory requirement...