Book Image

Natural Language Processing with TensorFlow - Second Edition

By : Thushan Ganegedara
2 (1)
Book Image

Natural Language Processing with TensorFlow - Second Edition

2 (1)
By: Thushan Ganegedara

Overview of this book

Learning how to solve natural language processing (NLP) problems is an important skill to master due to the explosive growth of data combined with the demand for machine learning solutions in production. Natural Language Processing with TensorFlow, Second Edition, will teach you how to solve common real-world NLP problems with a variety of deep learning model architectures. The book starts by getting readers familiar with NLP and the basics of TensorFlow. Then, it gradually teaches you different facets of TensorFlow 2.x. In the following chapters, you then learn how to generate powerful word vectors, classify text, generate new text, and generate image captions, among other exciting use-cases of real-world NLP. TensorFlow has evolved to be an ecosystem that supports a machine learning workflow through ingesting and transforming data, building models, monitoring, and productionization. We will then read text directly from files and perform the required transformations through a TensorFlow data pipeline. We will also see how to use a versatile visualization tool known as TensorBoard to visualize our models. By the end of this NLP book, you will be comfortable with using TensorFlow to build deep learning models with many different architectures, and efficiently ingest data using TensorFlow Additionally, you’ll be able to confidently use TensorFlow throughout your machine learning workflow.
Table of Contents (15 chapters)
12
Other Books You May Enjoy
13
Index

Understanding Long Short-Term Memory Networks

In this chapter, we will discuss the fundamentals behind a more advanced RNN variant known as Long Short-Term Memory Networks (LSTMs). Here, we will focus on understanding the theory behind LSTMs, so we can discuss their implementation in the next chapter. LSTMs are widely used in many sequential tasks (including stock market prediction, language modeling, and machine translation) and have proven to perform better than older sequential models (for example, standard RNNs), especially given the availability of large amounts of data. LSTMs are designed to avoid the problem of the vanishing gradient that we discussed in the previous chapter.

The main practical limitation posed by the vanishing gradient is that it prevents the model from learning long-term dependencies. However, by avoiding the vanishing gradient problem, LSTMs have the ability to store memory for longer than ordinary RNNs (for hundreds of time steps). In contrast to RNNs...