Book Image

Mastering Reinforcement Learning with Python

By : Enes Bilgin
Book Image

Mastering Reinforcement Learning with Python

By: Enes Bilgin

Overview of this book

Reinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents. Building on a strong theoretical foundation, this book takes a practical approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL. Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning. As you advance, you’ll explore many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray’s RLlib package. You’ll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the trade-offs between different approaches and avoiding common pitfalls. By the end of this book, you’ll have mastered how to train and deploy your own RL agents for solving RL problems.
Table of Contents (24 chapters)
1
Section 1: Reinforcement Learning Foundations
7
Section 2: Deep Reinforcement Learning
12
Section 3: Advanced Topics in RL
17
Section 4: Applications of RL

Curriculum learning

When we learn a new skill, we start with basics. Bouncing and dribbling are the first steps while learning basketball. Doing alley-oops is not something to try to teach in the first lesson. One needs to gradually proceed to advanced lessons, after feeling comfortable with the earlier ones. This idea of following a curriculum, from basics to advanced levels, is the basis of the whole education system. The question is whether machine learning models can benefit from the same approach. It turns out that they can!

In the context of RL, when we create a curriculum, we similarly start with "easy" environment configurations for the agent. This way the agent can get an idea about what success means early on, rather than spending a lot of time by blindly exploring the environment with the hope of stumbling upon success. We then gradually increase the difficulty if we observe the agent is exceeding a certain reward threshold. Each of these difficulty levels are...