Book Image

Mastering Reinforcement Learning with Python

By : Enes Bilgin
Book Image

Mastering Reinforcement Learning with Python

By: Enes Bilgin

Overview of this book

Reinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents. Building on a strong theoretical foundation, this book takes a practical approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL. Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning. As you advance, you’ll explore many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray’s RLlib package. You’ll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the trade-offs between different approaches and avoiding common pitfalls. By the end of this book, you’ll have mastered how to train and deploy your own RL agents for solving RL problems.
Table of Contents (24 chapters)
1
Section 1: Reinforcement Learning Foundations
7
Section 2: Deep Reinforcement Learning
12
Section 3: Advanced Topics in RL
17
Section 4: Applications of RL

Summary

This was our refresher on RL fundamentals! We began this chapter by discussing what RL is, and why it is such a hot topic and the next frontier in AI. We talked about some of the many possible applications of RL and the success stories that made it to the news headlines over the past several years. We defined the fundamental concepts we will use throughout the book. Finally, we covered the hardware and software you need to run the algorithms we will introduce in the next sections. Everything so far was to refresh your mind about RL, motivate and set you up for what is upcoming next: Implementing advanced RL algorithms to solve challenging real-world problems. In the next chapter, we will dive right into it with multi-armed bandit problems, an important class of RL algorithms that has many applications in personalization and advertising.