Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Reinforcement Learning with Python
  • Table Of Contents Toc
Mastering Reinforcement Learning with Python

Mastering Reinforcement Learning with Python

By : Enes Bilgin
4.4 (12)
close
close
Mastering Reinforcement Learning with Python

Mastering Reinforcement Learning with Python

4.4 (12)
By: Enes Bilgin

Overview of this book

Reinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents. Building on a strong theoretical foundation, this book takes a practical approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL. Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning. As you advance, you’ll explore many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray’s RLlib package. You’ll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the trade-offs between different approaches and avoiding common pitfalls. By the end of this book, you’ll have mastered how to train and deploy your own RL agents for solving RL problems.
Table of Contents (24 chapters)
close
close
1
Section 1: Reinforcement Learning Foundations
7
Section 2: Deep Reinforcement Learning
12
Section 3: Advanced Topics in RL
17
Section 4: Applications of RL

Temporal-difference learning

The first class of methods to solve MDP we covered in this chapter was DP, which

  • Requires to completely know the environment dynamics to be able find the optimal solution.
  • Allow us to progress toward the solution with one-step updates of the value functions.

We then covered the MC methods, which

  • Only require the ability to sample from the environment, therefore learn from experience, as opposed to knowing the environment dynamics - a huge advantage over DP,
  • But need to wait for a complete episode trajectory to update a policy.

Temporal-difference (TD) methods are, in some sense, the best of both worlds: They learn from experience, and they can update the policy after each step by bootstrapping. This comparison of TD to DP and MC is illustrated in Table 5.2.

Table 5.2 – Comparison of DP, MC, and TD learning methods

As a result, TD methods are central in RL, and you will encounter them...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Reinforcement Learning with Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon