Book Image

Applied Deep Learning and Computer Vision for Self-Driving Cars

By : Sumit Ranjan, Dr. S. Senthamilarasu
Book Image

Applied Deep Learning and Computer Vision for Self-Driving Cars

By: Sumit Ranjan, Dr. S. Senthamilarasu

Overview of this book

Thanks to a number of recent breakthroughs, self-driving car technology is now an emerging subject in the field of artificial intelligence and has shifted data scientists' focus to building autonomous cars that will transform the automotive industry. This book is a comprehensive guide to use deep learning and computer vision techniques to develop autonomous cars. Starting with the basics of self-driving cars (SDCs), this book will take you through the deep neural network techniques required to get up and running with building your autonomous vehicle. Once you are comfortable with the basics, you'll delve into advanced computer vision techniques and learn how to use deep learning methods to perform a variety of computer vision tasks such as finding lane lines, improving image classification, and so on. You will explore the basic structure and working of a semantic segmentation model and get to grips with detecting cars using semantic segmentation. The book also covers advanced applications such as behavior-cloning and vehicle detection using OpenCV, transfer learning, and deep learning methodologies to train SDCs to mimic human driving. By the end of this book, you'll have learned how to implement a variety of neural networks to develop your own autonomous vehicle using modern Python libraries.
Table of Contents (18 chapters)
1
Section 1: Deep Learning Foundation and SDC Basics
5
Section 2: Deep Learning and Computer Vision Techniques for SDC
10
Section 3: Semantic Segmentation for Self-Driving Cars
13
Section 4: Advanced Implementations

The workings of ANNs

We have seen the concept of how a single neuron or perceptron works; so now, let's expand the concept to the idea of deep learning. The following diagram shows us what multiple perceptrons look like:

Fig 2.12: Multiple perceptrons

In the preceding diagram, we can see various layers of single perceptrons connected to each other through their inputs and outputs. The input layer is violet, the hidden layers are blue and green, and the output layer of the network is represented in red.

Input layers are real values from the data, so they take in actual data as their input. The next layers are the hidden layers, which are between the input and output layers. If three or more hidden layers are present, then it's considered a deep neural network. The final layer is the output layer, where we have some sort of final estimation of whatever the output that we are trying to estimate is. As we progress through more layers, the level of...