Book Image

Distributed Data Systems with Azure Databricks

By : Alan Bernardo Palacio
Book Image

Distributed Data Systems with Azure Databricks

By: Alan Bernardo Palacio

Overview of this book

Microsoft Azure Databricks helps you to harness the power of distributed computing and apply it to create robust data pipelines, along with training and deploying machine learning and deep learning models. Databricks' advanced features enable developers to process, transform, and explore data. Distributed Data Systems with Azure Databricks will help you to put your knowledge of Databricks to work to create big data pipelines. The book provides a hands-on approach to implementing Azure Databricks and its associated methodologies that will make you productive in no time. Complete with detailed explanations of essential concepts, practical examples, and self-assessment questions, you’ll begin with a quick introduction to Databricks core functionalities, before performing distributed model training and inference using TensorFlow and Spark MLlib. As you advance, you’ll explore MLflow Model Serving on Azure Databricks and implement distributed training pipelines using HorovodRunner in Databricks. Finally, you’ll discover how to transform, use, and obtain insights from massive amounts of data to train predictive models and create entire fully working data pipelines. By the end of this MS Azure book, you’ll have gained a solid understanding of how to work with Databricks to create and manage an entire big data pipeline.
Table of Contents (17 chapters)
1
Section 1: Introducing Databricks
4
Section 2: Data Pipelines with Databricks
9
Section 3: Machine and Deep Learning with Databricks

Training machine learning models on tabular data

In this example, we will use a very popular dataset in data science, which is the wine dataset of physicochemical properties, to predict the quality of a specific wine. We will be using Azure Databricks Runtime ML, so be sure to attach the notebook to a cluster running this version of the available runtimes, as specified in the requirements at the beginning of the chapter.

Engineering the variables

We'll get started using the following steps:

  1. Our first step is to load the necessary data to train our models. We will load the datasets, which are stored as example datasets in DBFS, but you can also get them from the UCI Machine Learning repository. The code is shown in the following snippet:
    import pandas as pd
    white_wine = pd.read_csv("/dbfs/databricks-datasets/wine-quality/winequality-white.csv", sep=";")
    red_wine = pd.read_csv("/dbfs/databricks-datasets/wine-quality/winequality-red.csv&quot...