Book Image

Mastering Machine Learning Algorithms - Second Edition

By : Giuseppe Bonaccorso
Book Image

Mastering Machine Learning Algorithms - Second Edition

By: Giuseppe Bonaccorso

Overview of this book

Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios.
Table of Contents (28 chapters)
26
Other Books You May Enjoy
27
Index

Summary

In this chapter, we have discussed Hebb's rule, showing how it can drive the computation of the first principal component of the input dataset. We have also seen that this rule is unstable because it leads to the infinite growth of the synaptic weights and how it's possible to solve this problem using normalization or Oja's rule.

We have introduced two different neural networks based on Hebbian learning (Sanger's and Rubner-Tavan's networks), whose internal dynamics are slightly different, and which are able to extract the first n principal components in the right order (starting from the largest eigenvalue) without eigendecomposing the input covariance matrix.

Finally, we have introduced the concept of SOM and presented a model called a Kohonen network, which is able to map the input patterns onto a surface where some attractors (one per class) are placed through a competitive learning process. Such a model is able to recognize new patterns ...