Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Machine Learning Algorithms
  • Table Of Contents Toc
Mastering Machine Learning Algorithms

Mastering Machine Learning Algorithms - Second Edition

By : Giuseppe Bonaccorso, Bonaccorso
4 (12)
close
close
Mastering Machine Learning Algorithms

Mastering Machine Learning Algorithms

4 (12)
By: Giuseppe Bonaccorso, Bonaccorso

Overview of this book

Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios.
Table of Contents (28 chapters)
close
close
26
Other Books You May Enjoy
27
Index

Convolutional operators

Even if we work only with finite and discrete convolutions, it's useful to start providing the standard definition based on integrable functions. For simplicity, let's suppose that f(t) and k(t) are two real functions of a single variable with support in . The convolution of f(t) and k(t) (conventionally denoted as f(t) * k(t)), which we are going to call a kernel, is defined as follows:

The expression may not be very easy to understand without a mathematical background, but it can become exceptionally simple with a few considerations. First of all, the integral sums all values of ; therefore, the convolution is a function of the remaining variable, t. The second fundamental element is a sort of dynamic property: the kernel is reversed () and transformed into a function of a new variable, . Without deep mathematical knowledge, it's possible to understand that this operation shifts the function along the (independent variable) axis...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Machine Learning Algorithms
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon