Book Image

Mastering Machine Learning Algorithms. - Second Edition

By : Giuseppe Bonaccorso
Book Image

Mastering Machine Learning Algorithms. - Second Edition

By: Giuseppe Bonaccorso

Overview of this book

Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios.
Table of Contents (28 chapters)
26
Other Books You May Enjoy
27
Index

Variational autoencoders

A variational autoencoder (VAE) is a generative model proposed by Kingma and Wellin (in their work Kingma D. P., Wellin M., Auto-Encoding Variational Bayes, arXiv:1312.6114 [stat.ML]) that partially resembles a standard autoencoder, but it has some fundamental internal differences. The goal, in fact, is not finding an encoded representation of a dataset, but determining the parameters of a generative process that is able to yield all possible outputs given an input data-generating process.

Let's take the example of a model based on a learnable parameter vector and a set of latent variables that have a probability density function . Our goal can, therefore, be defined as the research of the parameters that maximize the likelihood of the marginalized distribution (obtained through the integration of the joint probability ):

If this problem could be easily solved in closed form, a large set of samples drawn from the data-generating process...