Book Image

Mastering Machine Learning Algorithms. - Second Edition

By : Giuseppe Bonaccorso
Book Image

Mastering Machine Learning Algorithms. - Second Edition

By: Giuseppe Bonaccorso

Overview of this book

Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios.
Table of Contents (28 chapters)
26
Other Books You May Enjoy
27
Index

Manifold learning

In Chapter 3, Introduction to Semi-Supervised Classification, we discussed the manifold assumption, saying that high-dimensional data normally lies on low-dimensional manifolds. Of course, this is not a theorem, but in many real cases, the assumption is proven to be correct, and it allows us to work with non-linear dimensionality reduction algorithms that would be otherwise unacceptable. In this section, we're going to analyze some of these algorithms. They are all implemented in scikit-learn, so it's easy to try them with complex datasets.

Isomap

Isomap is one of the simplest algorithms, and it's based on the idea of reducing dimensionality while trying to preserve the geodesic distances (which are the lengths of the shortest paths between a couple of points on the manifold) measured on the original manifold where the input data lies. The algorithm works in three steps. The first operation is a KNN clustering and the construction of the following...