Book Image

Mastering Machine Learning Algorithms - Second Edition

By : Giuseppe Bonaccorso
Book Image

Mastering Machine Learning Algorithms - Second Edition

By: Giuseppe Bonaccorso

Overview of this book

Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios.
Table of Contents (28 chapters)
26
Other Books You May Enjoy
27
Index

Summary

In this chapter, we have introduced the most important label propagation techniques. In particular, we have seen how to build a dataset graph based on a weighting kernel, and how to use the geometric information provided by unlabeled samples to determine the most likely class. The basic approach works by iterating the multiplication of the label vector times the weight matrix until a stable point is reached and we have proven that, under simple assumptions, it is always possible.

Another approach, implemented by scikit-learn, is based on the transition probability from a state (represented by a sample) to another one, until the convergence to a labeled point. The probability matrix is obtained using a normalized weight matrix to encourage transitions associated with close points and discourage all the long jumps. The main drawback of these two methods is the hard clamping of labeled samples; this constraint can be useful if we trust our dataset, but it can be a limitation...