Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Machine Learning Algorithms
  • Table Of Contents Toc
Mastering Machine Learning Algorithms

Mastering Machine Learning Algorithms - Second Edition

By : Giuseppe Bonaccorso, Bonaccorso
4 (12)
close
close
Mastering Machine Learning Algorithms

Mastering Machine Learning Algorithms

4 (12)
By: Giuseppe Bonaccorso, Bonaccorso

Overview of this book

Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios.
Table of Contents (28 chapters)
close
close
26
Other Books You May Enjoy
27
Index

Generalized Linear Models and Regression

In this chapter, we're going to introduce the concept of Generalized Linear Models (GLMs) and regression, which remain essential pillars of topics such as econometrics and epidemiology. The goal is to explain the fundamental elements and expand them, showing both the advantages and limitations, while also focusing attention on practical applications that can be effectively solved using different kind of regression techniques.

In particular, we're going to discuss the following:

  • GLMs
  • Linear regression based on ordinary and weighted least squares
  • Other regression techniques and when to use them, including:
    • Ridge regression and its implementation
    • Polynomial regression with coded examples
    • Isotonic regression
    • Risk modeling with lasso and logistic regression

The first concept we're going to discuss is at the center of all the other algorithms analyzed in this chapter, and which is based on the description...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Machine Learning Algorithms
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon