Book Image

Getting Started with Google BERT

By : Sudharsan Ravichandiran
Book Image

Getting Started with Google BERT

By: Sudharsan Ravichandiran

Overview of this book

BERT (bidirectional encoder representations from transformer) has revolutionized the world of natural language processing (NLP) with promising results. This book is an introductory guide that will help you get to grips with Google's BERT architecture. With a detailed explanation of the transformer architecture, this book will help you understand how the transformer’s encoder and decoder work. You’ll explore the BERT architecture by learning how the BERT model is pre-trained and how to use pre-trained BERT for downstream tasks by fine-tuning it for NLP tasks such as sentiment analysis and text summarization with the Hugging Face transformers library. As you advance, you’ll learn about different variants of BERT such as ALBERT, RoBERTa, and ELECTRA, and look at SpanBERT, which is used for NLP tasks like question answering. You'll also cover simpler and faster BERT variants based on knowledge distillation such as DistilBERT and TinyBERT. The book takes you through MBERT, XLM, and XLM-R in detail and then introduces you to sentence-BERT, which is used for obtaining sentence representation. Finally, you'll discover domain-specific BERT models such as BioBERT and ClinicalBERT, and discover an interesting variant called VideoBERT. By the end of this BERT book, you’ll be well-versed with using BERT and its variants for performing practical NLP tasks.
Table of Contents (15 chapters)
1
Section 1 - Starting Off with BERT
5
Section 2 - Exploring BERT Variants
8
Section 3 - Applications of BERT

Understanding the decoder of a transformer

Suppose we want to translate the English sentence (source sentence) I am good to the French sentence (target sentence) Je vais bien. To perform this translation, we feed the source sentence I am good to the encoder. The encoder learns the representation of the source sentence. In the previous section, we learned how exactly the encoder learns the representation of the source sentence. Now, we take this encoder's representation and feed it to the decoder. The decoder takes the encoder representation as input and generates the target sentence Je vais bien, as shown in the following figure:

Figure 1.35 – Encoder and decoder of the transformer

In the encoder section, we learned that, instead of having one encoder, we can have a stack of encoders. Similar to the encoder, we can also have a stack of decoders. For simplicity, let's set . As shown in the following figure, the output of one decoder is sent as the input to the decoder...