Book Image

Getting Started with Google BERT

By : Sudharsan Ravichandiran
Book Image

Getting Started with Google BERT

By: Sudharsan Ravichandiran

Overview of this book

BERT (bidirectional encoder representations from transformer) has revolutionized the world of natural language processing (NLP) with promising results. This book is an introductory guide that will help you get to grips with Google's BERT architecture. With a detailed explanation of the transformer architecture, this book will help you understand how the transformer’s encoder and decoder work. You’ll explore the BERT architecture by learning how the BERT model is pre-trained and how to use pre-trained BERT for downstream tasks by fine-tuning it for NLP tasks such as sentiment analysis and text summarization with the Hugging Face transformers library. As you advance, you’ll learn about different variants of BERT such as ALBERT, RoBERTa, and ELECTRA, and look at SpanBERT, which is used for NLP tasks like question answering. You'll also cover simpler and faster BERT variants based on knowledge distillation such as DistilBERT and TinyBERT. The book takes you through MBERT, XLM, and XLM-R in detail and then introduces you to sentence-BERT, which is used for obtaining sentence representation. Finally, you'll discover domain-specific BERT models such as BioBERT and ClinicalBERT, and discover an interesting variant called VideoBERT. By the end of this BERT book, you’ll be well-versed with using BERT and its variants for performing practical NLP tasks.
Table of Contents (15 chapters)
1
Section 1 - Starting Off with BERT
5
Section 2 - Exploring BERT Variants
8
Section 3 - Applications of BERT

Training the transformer

We can train the transformer network by minimizing the loss function. Okay, but what loss function should we use? We learned that the decoder predicts the probability distribution over the vocabulary and we select the word that has the highest probability as output. So, we have to minimize the difference between the predicted probability distribution and the actual probability distribution. First, how can we find the difference between the two distributions? We can use cross-entropy for that. Thus, we can define our loss function as a cross-entropy loss and try to minimize the difference between the predicted and actual probability distribution. We train the network by minimizing the loss function and we use Adam as an optimizer.

One additional point we need to note down is that to prevent overfitting, we apply dropout to the output of each sublayer and we also apply dropout to the sum of the embeddings and the positional encoding.

Thus, in this chapter, we learned...