Book Image

Getting Started with Google BERT

By : Sudharsan Ravichandiran
Book Image

Getting Started with Google BERT

By: Sudharsan Ravichandiran

Overview of this book

BERT (bidirectional encoder representations from transformer) has revolutionized the world of natural language processing (NLP) with promising results. This book is an introductory guide that will help you get to grips with Google's BERT architecture. With a detailed explanation of the transformer architecture, this book will help you understand how the transformer’s encoder and decoder work. You’ll explore the BERT architecture by learning how the BERT model is pre-trained and how to use pre-trained BERT for downstream tasks by fine-tuning it for NLP tasks such as sentiment analysis and text summarization with the Hugging Face transformers library. As you advance, you’ll learn about different variants of BERT such as ALBERT, RoBERTa, and ELECTRA, and look at SpanBERT, which is used for NLP tasks like question answering. You'll also cover simpler and faster BERT variants based on knowledge distillation such as DistilBERT and TinyBERT. The book takes you through MBERT, XLM, and XLM-R in detail and then introduces you to sentence-BERT, which is used for obtaining sentence representation. Finally, you'll discover domain-specific BERT models such as BioBERT and ClinicalBERT, and discover an interesting variant called VideoBERT. By the end of this BERT book, you’ll be well-versed with using BERT and its variants for performing practical NLP tasks.
Table of Contents (15 chapters)
1
Section 1 - Starting Off with BERT
5
Section 2 - Exploring BERT Variants
8
Section 3 - Applications of BERT

Understanding ELECTRA

ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements Accurately) is yet another interesting variant of BERT. We learned that we pre-train BERT using the MLM and NSP tasks. We know that in the MLM task, we randomly mask 15% of the tokens and train BERT to predict the masked token. Instead of using the MLM task as a pre-training objective, ELECTRA is pre-trained using a task called replaced token detection.

The replaced token detection task is very similar to MLM but instead of masking a token with the [MASK] token, here we replace a token with a different token and train the model to classify whether the given tokens are actual or replaced tokens.

Okay, but why use the replaced token detection task instead of the MLM task? One of the problems with the MLM task is that it uses the [MASK] token during pre-training but the [MASK] token will not be present during fine-tuning on downstream tasks. This causes a mismatch between pre-training and...