Book Image

Scientific Computing with Python - Second Edition

By : Claus Führer, Jan Erik Solem, Olivier Verdier
Book Image

Scientific Computing with Python - Second Edition

By: Claus Führer, Jan Erik Solem, Olivier Verdier

Overview of this book

Python has tremendous potential within the scientific computing domain. This updated edition of Scientific Computing with Python features new chapters on graphical user interfaces, efficient data processing, and parallel computing to help you perform mathematical and scientific computing efficiently using Python. This book will help you to explore new Python syntax features and create different models using scientific computing principles. The book presents Python alongside mathematical applications and demonstrates how to apply Python concepts in computing with the help of examples involving Python 3.8. You'll use pandas for basic data analysis to understand the modern needs of scientific computing, and cover data module improvements and built-in features. You'll also explore numerical computation modules such as NumPy and SciPy, which enable fast access to highly efficient numerical algorithms. By learning to use the plotting module Matplotlib, you will be able to represent your computational results in talks and publications. A special chapter is devoted to SymPy, a tool for bridging symbolic and numerical computations. By the end of this Python book, you'll have gained a solid understanding of task automation and how to implement and test mathematical algorithms within the realm of scientific computing.
Table of Contents (23 chapters)
20
About Packt
22
References

Functions of two variables

Suppose  and  are vectors and we want to form the matrix  with elements . This would correspond to the function . The matrix  is merely defined by:

W=u.reshape(-1,1) + v

If the vectors  and  are and  respectively, the result is:

array([[2, 3, 4],
[3, 4, 5]])

More generally, suppose that we want to sample the function . Supposing that the vectors  and  are defined, the matrix  of sampled values is obtained with:

W = cos(x).reshape(-1,1) + sin(2*y)

Note that this is very frequently used in combination with ogrid. The vectors obtained from ogrid are already conveniently shaped for broadcasting. This allows for the following elegant sampling of the function :

x,y = ogrid[0:1:3j,0:1:3j] 
# x,y are vectors with the contents of linspace(0,1,3)
w = cos(x) + sin(2*y)

The syntax of ogrid needs some explanation: First, ogrid is not a function. It is an instance...