Book Image

Scientific Computing with Python - Second Edition

By : Claus Führer, Jan Erik Solem, Olivier Verdier
Book Image

Scientific Computing with Python - Second Edition

By: Claus Führer, Jan Erik Solem, Olivier Verdier

Overview of this book

Python has tremendous potential within the scientific computing domain. This updated edition of Scientific Computing with Python features new chapters on graphical user interfaces, efficient data processing, and parallel computing to help you perform mathematical and scientific computing efficiently using Python. This book will help you to explore new Python syntax features and create different models using scientific computing principles. The book presents Python alongside mathematical applications and demonstrates how to apply Python concepts in computing with the help of examples involving Python 3.8. You'll use pandas for basic data analysis to understand the modern needs of scientific computing, and cover data module improvements and built-in features. You'll also explore numerical computation modules such as NumPy and SciPy, which enable fast access to highly efficient numerical algorithms. By learning to use the plotting module Matplotlib, you will be able to represent your computational results in talks and publications. A special chapter is devoted to SymPy, a tool for bridging symbolic and numerical computations. By the end of this Python book, you'll have gained a solid understanding of task automation and how to implement and test mathematical algorithms within the realm of scientific computing.
Table of Contents (23 chapters)
20
About Packt
22
References

7.3 Return values

A function in Python always returns a single object. If a function has to return more than one object, these are packed and returned as a single tuple object.

For instance, the following function takes a complex number and returns its polar coordinate representation as magnitude and angle :

def complex_to_polar(z):
    r = sqrt(z.real ** 2 + z.imag ** 2)
    phi = arctan2(z.imag, z.real)
    return (r,phi)  # here the return object is formedcite

(See also Euler’s formula, .)

Here, we used the NumPy function sqrt(x) for the square root of a number x and arctan2(x,y) for the expression .

Let's try our function:

z = 3 + 5j  # here we define a complex number
a = complex_to_polar(z)
r = a[0]
phi = a[1]

The last three statements can be written more elegantly in a single line:

r,phi = complex_to_polar(z)

We can test our function by calling polar_to_comp defined in Exercise 1 in the Exercises section.

If a function has no return statement, it returns the value...