Book Image

Deep Learning with TensorFlow 2 and Keras - Second Edition

By : Antonio Gulli, Amita Kapoor, Sujit Pal
Book Image

Deep Learning with TensorFlow 2 and Keras - Second Edition

By: Antonio Gulli, Amita Kapoor, Sujit Pal

Overview of this book

Deep Learning with TensorFlow 2 and Keras, Second Edition teaches neural networks and deep learning techniques alongside TensorFlow (TF) and Keras. You’ll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow is the machine learning library of choice for professional applications, while Keras offers a simple and powerful Python API for accessing TensorFlow. TensorFlow 2 provides full Keras integration, making advanced machine learning easier and more convenient than ever before. This book also introduces neural networks with TensorFlow, runs through the main applications (regression, ConvNets (CNNs), GANs, RNNs, NLP), covers two working example apps, and then dives into TF in production, TF mobile, and using TensorFlow with AutoML.
Table of Contents (19 chapters)
17
Other Books You May Enjoy
18
Index

Principal component analysis

Principal component analysis (PCA) is the most popular multivariate statistical technique for dimensionality reduction. It analyzes the training data consisting of several dependent variables, which are, in general, inter-correlated, and extracts important information from the training data in the form of a set of new orthogonal variables called principal components. We can perform PCA using two methods either using eigen decomposition or using singular value decomposition (SVD).

PCA reduces the n–dimensional input data to r–dimensional input data, where r<n. In the most simple terms, PCA involves translating the origin and performing rotation of the axis such that one of the axes (principal axis) has the highest variance with data points. A reduced-dimensions dataset is obtained from the original dataset by performing this transformation and then dropping (removing) the orthogonal axes with low variance. Here we employ the SVD method...