Book Image

Deep Learning with TensorFlow 2 and Keras - Second Edition

By : Antonio Gulli, Amita Kapoor, Sujit Pal
Book Image

Deep Learning with TensorFlow 2 and Keras - Second Edition

By: Antonio Gulli, Amita Kapoor, Sujit Pal

Overview of this book

Deep Learning with TensorFlow 2 and Keras, Second Edition teaches neural networks and deep learning techniques alongside TensorFlow (TF) and Keras. You’ll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow is the machine learning library of choice for professional applications, while Keras offers a simple and powerful Python API for accessing TensorFlow. TensorFlow 2 provides full Keras integration, making advanced machine learning easier and more convenient than ever before. This book also introduces neural networks with TensorFlow, runs through the main applications (regression, ConvNets (CNNs), GANs, RNNs, NLP), covers two working example apps, and then dives into TF in production, TF mobile, and using TensorFlow with AutoML.
Table of Contents (19 chapters)
17
Other Books You May Enjoy
18
Index

Denoising autoencoders

The two autoencoders that we have covered in the previous sections are examples of undercomplete autoencoders, because the hidden layer in them has lower dimensionality as compared to the input (output) layer. Denoising autoencoders belong to the class of overcomplete autoencoders, because they work better when the dimensions of the hidden layer are more than the input layer.

A denoising autoencoder learns from a corrupted (noisy) input; it feed its encoder network the noisy input, and then the reconstructed image from the decoder is compared with the original input. The idea is that this will help the network learn how to denoise an input. It will no longer just make pixel-wise comparisons, but in order to denoise it will learn the information of neighboring pixels as well.

A Denoising autoencoder has two main differences from other autoencoders: first, n_hidden, the number of hidden units in the bottleneck layer is greater than the number of units in...