Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying What's New in TensorFlow 2.0
  • Table Of Contents Toc
What's New in TensorFlow 2.0

What's New in TensorFlow 2.0

By : Baranwal, Alizishaan Khatri
5 (2)
close
close
What's New in TensorFlow 2.0

What's New in TensorFlow 2.0

5 (2)
By: Baranwal, Alizishaan Khatri

Overview of this book

TensorFlow is an end-to-end machine learning platform for experts as well as beginners, and its new version, TensorFlow 2.0 (TF 2.0), improves its simplicity and ease of use. This book will help you understand and utilize the latest TensorFlow features. What's New in TensorFlow 2.0 starts by focusing on advanced concepts such as the new TensorFlow Keras APIs, eager execution, and efficient distribution strategies that help you to run your machine learning models on multiple GPUs and TPUs. The book then takes you through the process of building data ingestion and training pipelines, and it provides recommendations and best practices for feeding data to models created using the new tf.keras API. You'll explore the process of building an inference pipeline using TF Serving and other multi-platform deployments before moving on to explore the newly released AIY, which is essentially do-it-yourself AI. This book delves into the core APIs to help you build unified convolutional and recurrent layers and use TensorBoard to visualize deep learning models using what-if analysis. By the end of the book, you'll have learned about compatibility between TF 2.0 and TF 1.x and be able to migrate to TF 2.0 smoothly.
Table of Contents (13 chapters)
close
close
Lock Free Chapter
1
Section 1: TensorFlow 2.0 - Architecture and API Changes
4
Section 2: TensorFlow 2.0 - Data and Model Training Pipelines
7
Section 3: TensorFlow 2.0 - Model Inference and Deployment and AIY
10
Section 4: TensorFlow 2.0 - Migration, Summary

Designing and Constructing Input Data Pipelines

This chapter will give an overview of how to build complex input data pipelines for ingesting large training/inference datasets in the most common formats, such as CSV files, images, text, and so on using tf.data APIs consisting of the TFRecords and tf.data.Dataset methods. You will also get a general idea about protocol buffers, protocol messages, and how they are implemented using the TFRecords and tf.Example methods in TensorFlow 2.0 (TF 2.0). This chapter also explains the best practices for using the tf.data.Dataset method with respect to the shuffling, batching, and prefetching of data, and provides recommendations in terms of TF 2.0. Finally, we will talk about the built-in TensorFlow datasets, which have been newly added and are extremely useful for building a prototype model training pipeline.

The following topics will be...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
What's New in TensorFlow 2.0
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon