Book Image

Hands-On Music Generation with Magenta

By : Alexandre DuBreuil
Book Image

Hands-On Music Generation with Magenta

By: Alexandre DuBreuil

Overview of this book

The importance of machine learning (ML) in art is growing at a rapid pace due to recent advancements in the field, and Magenta is at the forefront of this innovation. With this book, you’ll follow a hands-on approach to using ML models for music generation, learning how to integrate them into an existing music production workflow. Complete with practical examples and explanations of the theoretical background required to understand the underlying technologies, this book is the perfect starting point to begin exploring music generation. The book will help you learn how to use the models in Magenta for generating percussion sequences, monophonic and polyphonic melodies in MIDI, and instrument sounds in raw audio. Through practical examples and in-depth explanations, you’ll understand ML models such as RNNs, VAEs, and GANs. Using this knowledge, you’ll create and train your own models for advanced music generation use cases, along with preparing new datasets. Finally, you’ll get to grips with integrating Magenta with other technologies, such as digital audio workstations (DAWs), and using Magenta.js to distribute music generation apps in the browser. By the end of this book, you'll be well-versed with Magenta and have developed the skills you need to use ML models for music generation in your own style.
Table of Contents (16 chapters)
1
Section 1: Introduction to Artwork Generation
3
Section 2: Music Generation with Machine Learning
8
Section 3: Training, Learning, and Generating a Specific Style
11
Section 4: Making Your Models Interact with Other Applications

Chapter 5: Audio Generation with NSynth and GANSynth

  1. You have to handle 16,000 samples per second (at least) and keep track of the general structure at a bigger time scale.
  2. NSynth is a WaveNet-style autoencoder that learns its own temporal embedding, making it possible to capture long term structure, and providing access to a useful hidden space.
  3. The colors in the rainbowgram are the 16 dimensions of the temporal embedding.
  4. Check the timestretch method in the audio_utils.py file in the chapter's code.

  1. GANSynth uses upsampling convolutions, making the training and generation processing in parallel possible for the entire audio sample.
  2. You need to sample the random normal distribution using np.random.normal(size=[10, 256]), where 10 is the number of sampled instruments, and 256 is the size of the latent vector (given by the latent_vector_size configuration).

...