Book Image

Hands-On Music Generation with Magenta

By : Alexandre DuBreuil
Book Image

Hands-On Music Generation with Magenta

By: Alexandre DuBreuil

Overview of this book

The importance of machine learning (ML) in art is growing at a rapid pace due to recent advancements in the field, and Magenta is at the forefront of this innovation. With this book, you’ll follow a hands-on approach to using ML models for music generation, learning how to integrate them into an existing music production workflow. Complete with practical examples and explanations of the theoretical background required to understand the underlying technologies, this book is the perfect starting point to begin exploring music generation. The book will help you learn how to use the models in Magenta for generating percussion sequences, monophonic and polyphonic melodies in MIDI, and instrument sounds in raw audio. Through practical examples and in-depth explanations, you’ll understand ML models such as RNNs, VAEs, and GANs. Using this knowledge, you’ll create and train your own models for advanced music generation use cases, along with preparing new datasets. Finally, you’ll get to grips with integrating Magenta with other technologies, such as digital audio workstations (DAWs), and using Magenta.js to distribute music generation apps in the browser. By the end of this book, you'll be well-versed with Magenta and have developed the skills you need to use ML models for music generation in your own style.
Table of Contents (16 chapters)
1
Section 1: Introduction to Artwork Generation
3
Section 2: Music Generation with Machine Learning
8
Section 3: Training, Learning, and Generating a Specific Style
11
Section 4: Making Your Models Interact with Other Applications

Using GANSynth as a generative instrument

In the previous section, we used NSynth to generate new sound samples by combining existing sounds. You may have noticed that the audio synthesis process is very time-consuming. This is because autoregressive models, such as WaveNet, focus on a single audio sample, which makes the resulting reconstruction of the waveform really slow because it has to process them iteratively.

GANSynth, on the other hand, uses upsampling convolutions, making the training and generation processing in parallel possible for the entire audio sample. This is a major advantage over autoregressive models such as NSynth since those algorithms tend to be I/O bound on GPU hardware.

The results of GANSynth are impressive:

  • Training on the NSynth dataset converges in ~3-4 days on a single V100 GPU. For comparison, the NSynth WaveNet model converges in 10 days on 32...