Book Image

Hands-On Neuroevolution with Python

By : Iaroslav Omelianenko
Book Image

Hands-On Neuroevolution with Python

By: Iaroslav Omelianenko

Overview of this book

Neuroevolution is a form of artificial intelligence learning that uses evolutionary algorithms to simplify the process of solving complex tasks in domains such as games, robotics, and the simulation of natural processes. This book will give you comprehensive insights into essential neuroevolution concepts and equip you with the skills you need to apply neuroevolution-based algorithms to solve practical, real-world problems. You'll start with learning the key neuroevolution concepts and methods by writing code with Python. You'll also get hands-on experience with popular Python libraries and cover examples of classical reinforcement learning, path planning for autonomous agents, and developing agents to autonomously play Atari games. Next, you'll learn to solve common and not-so-common challenges in natural computing using neuroevolution-based algorithms. Later, you'll understand how to apply neuroevolution strategies to existing neural network designs to improve training and inference performance. Finally, you'll gain clear insights into the topology of neural networks and how neuroevolution allows you to develop complex networks, starting with simple ones. By the end of this book, you will not only have explored existing neuroevolution-based algorithms, but also have the skills you need to apply them in your research and work assignments.
Table of Contents (18 chapters)
Free Chapter
1
Section 1: Fundamentals of Evolutionary Computation Algorithms and Neuroevolution Methods
4
Section 2: Applying Neuroevolution Methods to Solve Classic Computer Science Problems
9
Section 3: Advanced Neuroevolution Methods
14
Section 4: Discussion and Concluding Remarks

Objective function definition using the fitness score

In this section, you will learn about the creation of successful maze-solver agents using a goal-oriented objective function to guide the evolutionary process. This objective function is based on the estimation of the fitness score of the maze solver by measuring the distance between its final position and the maze exit after executing the 400 simulation steps. Thus, the objective function is goal-oriented and solely depends on the ultimate goal of the experiment: reaching the maze exit area.

In the next chapter, we will consider a different approach for solution search optimization, which is based on the Novelty Search (NS) optimization method. The NS optimization method is built around exploring new configurations of the solver agent during evolution and doesn't include proximity to the final goal (in this case, the...