Book Image

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

By : Tarek Amr
Book Image

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

By: Tarek Amr

Overview of this book

Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits. The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You’ll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you’ll gain a thorough understanding of its theory and learn when to apply it. As you advance, you’ll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms. By the end of this machine learning book, you’ll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You’ll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production.
Table of Contents (18 chapters)
1
Section 1: Supervised Learning
8
Section 2: Advanced Supervised Learning
13
Section 3: Unsupervised Learning and More

Estimating multiple regression targets

In your online business, you may want to estimate the lifetime value of your users in the next month, the next quarter, and the next year. You could build three different regressors for each one of these three separate estimations. However, when the three estimations use the exact same features, it becomes more practical to build one regressor with three outputs. In the next section, we are going to see how to build a multi-output regressor, then we will learn how to inject interdependencies between those estimations using regression chains.

Building a multi-output regressor

Some regressors allow us to predict multiple targets at once. For example, the ridge regressor allows for a two-dimensional target to be given. In other words, rather than having y as a single-dimensional array, it can be given as a matrix, where each column represents a different target. For the other regressors where only single targets are allowed...