Book Image

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

By : Tarek Amr
Book Image

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

By: Tarek Amr

Overview of this book

Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits. The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You’ll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you’ll gain a thorough understanding of its theory and learn when to apply it. As you advance, you’ll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms. By the end of this machine learning book, you’ll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You’ll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production.
Table of Contents (18 chapters)
1
Section 1: Supervised Learning
8
Section 2: Advanced Supervised Learning
13
Section 3: Unsupervised Learning and More

Dealing with compound classification targets

As with regressors, classifiers can also have multiple targets. Additionally, due to their discrete targets, a single target can have two or more values. To be able to differentiate between the different cases, machine learning practitioners came up with the following terminologies:

  • Multi-class
  • Multi-label (and multi-output)

The following matrix summarizes the aforementioned terminologies. I will follow up with an example to clarify more, and will also shed some light on the subtle difference between the multi-label and multi-output terms later in this chapter:

Imagine a scenario where you are given a picture and you need to classify it based on whether it contains a cat or not. In this case, a binary classifier is needed, that is, where the targets are either zeroes or ones. When the problem involves figuring out whether the picture contains a cat, a...