Book Image

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

By : Tarek Amr
Book Image

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

By: Tarek Amr

Overview of this book

Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits. The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You’ll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you’ll gain a thorough understanding of its theory and learn when to apply it. As you advance, you’ll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms. By the end of this machine learning book, you’ll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You’ll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production.
Table of Contents (18 chapters)
1
Section 1: Supervised Learning
8
Section 2: Advanced Supervised Learning
13
Section 3: Unsupervised Learning and More

Calibrating a classifier's probabilities

"Every business and every product has risks. You can't get around it."
– Lee Iacocca

Say we want to predict whether someone will catch a viral disease. We can then build a classifier to predict whether they will catch the viral infection or not. Nevertheless, when the percentage of those who may catch the infection is too low, the classifier's binary predictions may not be precise enough. Thus, with such uncertainty and limited resources, we may want to only put in quarantine those with more than a 90% chance of catching the infection. The classifier's predicted probability sounds like a good source for such estimation. Nevertheless, we can only call this probability reliable if 9 out of 10 of the samples we predict to be in a certain class with probabilities above 90% are actually in this class. Similarly, 80% of the samples with probabilities above 80% should also end up being in...