Book Image

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

By : Tarek Amr
Book Image

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

By: Tarek Amr

Overview of this book

Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits. The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You’ll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you’ll gain a thorough understanding of its theory and learn when to apply it. As you advance, you’ll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms. By the end of this machine learning book, you’ll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You’ll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production.
Table of Contents (18 chapters)
1
Section 1: Supervised Learning
8
Section 2: Advanced Supervised Learning
13
Section 3: Unsupervised Learning and More

Understanding decision trees

I chose to start this book with decision trees because I've noticed that the majority of new machine learning practitioners have previous experience in one of two fields—software development, or statistics and mathematics. Decision trees can conceptually resemble some of the concepts software developers are used to, such as nested if-else conditions and binary search trees. As for the statisticians, bear with me—soon, you will feel at home when we reach the chapter about linear models.

What are decision trees?

I think the best way to explain what decision trees are is by showing the rules they generate after they are trained. Luckily, we can access those rules and print them. Here is an example of how decision tree rules look:

Shall I take an umbrella with me?
|--- Chance of Rainy <= 0.6
| |--- UV Index <= 7.0
| | |--- class: False
| |--- UV Index > 7.0
| | |--- class: True
|--- Chance...