Book Image

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

By : Tarek Amr
Book Image

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

By: Tarek Amr

Overview of this book

Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits. The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You’ll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you’ll gain a thorough understanding of its theory and learn when to apply it. As you advance, you’ll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms. By the end of this machine learning book, you’ll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You’ll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production.
Table of Contents (18 chapters)
1
Section 1: Supervised Learning
8
Section 2: Advanced Supervised Learning
13
Section 3: Unsupervised Learning and More

Predicting house prices in Boston

Now that we understand how linear regression works, let's move on to looking at a real dataset where we can demonstrate a more practical use case.

The Boston dataset is a small set representing the house prices in the city of Boston. It contains 506 samples and 13 features. Let's load the data into a DataFrame, as follows:

from sklearn.datasets import load_boston

boston = load_boston()

df_dataset = pd.DataFrame(
boston.data,
columns=boston.feature_names,
)
df_dataset['target'] = boston.target

Data exploration

It's important to make sure you do not have any null values in your data; otherwise, scikit-learn will complain about it. Here, I will count the sum of the null values in each column, then take the sum of it. If I get 0, then I am a happy man:

df_dataset.isnull().sum().sum() # Luckily, the result is zero

For a regression problem, the most important thing to do is to...