Book Image

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

By : Tarek Amr
Book Image

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

By: Tarek Amr

Overview of this book

Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits. The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You’ll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you’ll gain a thorough understanding of its theory and learn when to apply it. As you advance, you’ll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms. By the end of this machine learning book, you’ll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You’ll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production.
Table of Contents (18 chapters)
1
Section 1: Supervised Learning
8
Section 2: Advanced Supervised Learning
13
Section 3: Unsupervised Learning and More

Loading and displaying images

"Photographs are two-dimensional. I work in four dimensions."
– Tino Sehgal

When asked about the number of dimensions that an image has, photographers, painters, illustrators, and almost everyone else on this planet will agree that images are two-dimensional objects. Only machine learning practitioners see images differently. For us, every pixel in a black and white image is a separate dimension. Dimensions expand even more with colored images, but that's something for later. We see each pixel as a separate dimension so that we can deal with each pixel and its value as a unique feature that defines the image, along with the other pixels (features). So, unlikeTino Sehgal, we can sometimes end up working with 4,000 dimensions.

The ModifiedNational Instituteof Standardsand Technology(MNIST) dataset is a collection of handwritten digits that is commonly used inimage processing. Due to its popularity, it...