Book Image

Deep Reinforcement Learning Hands-On - Second Edition

By : Maxim Lapan
Book Image

Deep Reinforcement Learning Hands-On - Second Edition

By: Maxim Lapan

Overview of this book

Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. With six new chapters devoted to a variety of up-to-the-minute developments in RL, including discrete optimization (solving the Rubik's Cube), multi-agent methods, Microsoft's TextWorld environment, advanced exploration techniques, and more, you will come away from this book with a deep understanding of the latest innovations in this emerging field. In addition, you will gain actionable insights into such topic areas as deep Q-networks, policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. You will also discover how to build a real hardware robot trained with RL for less than $100 and solve the Pong environment in just 30 minutes of training using step-by-step code optimization. In short, Deep Reinforcement Learning Hands-On, Second Edition, is your companion to navigating the exciting complexities of RL as it helps you attain experience and knowledge through real-world examples.
Table of Contents (28 chapters)
Other Books You May Enjoy

RL's complications

The first thing to note is that observation in RL depends on an agent's behavior and, to some extent, it is the result of this behavior. If your agent decides to do inefficient things, then the observations will tell you nothing about what it has done wrong and what should be done to improve the outcome (the agent will just get negative feedback all the time). If the agent is stubborn and keeps making mistakes, then the observations will give the false impression that there is no way to get a larger reward—life is suffering—which could be totally wrong.

In ML terms, this can be rephrased as having non-i.i.d. data. The abbreviation i.i.d. stands for independent and identically distributed, a requirement for most supervised learning methods.

The second thing that complicates our agent's life is that it needs to not only exploit the knowledge it has learned, but actively explore the environment, because maybe doing things differently...