Book Image

Deep Reinforcement Learning Hands-On - Second Edition

By : Maxim Lapan
Book Image

Deep Reinforcement Learning Hands-On - Second Edition

By: Maxim Lapan

Overview of this book

Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. With six new chapters devoted to a variety of up-to-the-minute developments in RL, including discrete optimization (solving the Rubik's Cube), multi-agent methods, Microsoft's TextWorld environment, advanced exploration techniques, and more, you will come away from this book with a deep understanding of the latest innovations in this emerging field. In addition, you will gain actionable insights into such topic areas as deep Q-networks, policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. You will also discover how to build a real hardware robot trained with RL for less than $100 and solve the Pong environment in just 30 minutes of training using step-by-step code optimization. In short, Deep Reinforcement Learning Hands-On, Second Edition, is your companion to navigating the exciting complexities of RL as it helps you attain experience and knowledge through real-world examples.
Table of Contents (28 chapters)
Other Books You May Enjoy

The deep NLP basics

Hopefully, you're excited about chatbots and their potential applications, so let's now get to the boring details of NLP building blocks and standard approaches. As with almost everything in ML, there is a lot of hype around deep NLP and it is evolving at a fast pace, so this section will just scratch the surface and cover the most common and standard building blocks. For a more detailed description, Richard Socher's online course CS224d ( is a really good starting point.


NLP has its own specifics that make it different from computer vision or other domains. One such feature is processing variable-length objects. At various levels, NLP deals with objects that could have different lengths; for example, a word in a language could contain several characters. Sentences are formed from variable-length word sequences. Paragraphs or documents consist of varying numbers of sentences. Such variability is not NLP-specific...