Book Image

Deep Reinforcement Learning Hands-On - Second Edition

By : Maxim Lapan
5 (2)
Book Image

Deep Reinforcement Learning Hands-On - Second Edition

5 (2)
By: Maxim Lapan

Overview of this book

Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. With six new chapters devoted to a variety of up-to-the-minute developments in RL, including discrete optimization (solving the Rubik's Cube), multi-agent methods, Microsoft's TextWorld environment, advanced exploration techniques, and more, you will come away from this book with a deep understanding of the latest innovations in this emerging field. In addition, you will gain actionable insights into such topic areas as deep Q-networks, policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. You will also discover how to build a real hardware robot trained with RL for less than $100 and solve the Pong environment in just 30 minutes of training using step-by-step code optimization. In short, Deep Reinforcement Learning Hands-On, Second Edition, is your companion to navigating the exciting complexities of RL as it helps you attain experience and knowledge through real-world examples.
Table of Contents (28 chapters)
26
Other Books You May Enjoy
27
Index

Black-box methods

To begin with, let's discuss the whole family of black-box methods and how it differs from what we've covered so far. Black-box optimization methods are the general approach to the optimization problem, when you treat the objective that you're optimizing as a black box, without any assumptions about the differentiability, the value function, the smoothness of the objective, and so on. The only requirement that those methods expose is the ability to calculate the fitness function, which should give us the measure of suitability of a particular instance of the optimized entity at hand.

One of the simplest examples in this family is random search, which is when you randomly sample the thing you're looking for (in the case of RL, it's the policy, ), check the fitness of this candidate, and if the result is good enough (according to some reward criteria), then you're done. Otherwise, you repeat the process again and again. Despite the simplicity...