Book Image

Deep Reinforcement Learning Hands-On - Second Edition

By : Maxim Lapan
5 (2)
Book Image

Deep Reinforcement Learning Hands-On - Second Edition

5 (2)
By: Maxim Lapan

Overview of this book

Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. With six new chapters devoted to a variety of up-to-the-minute developments in RL, including discrete optimization (solving the Rubik's Cube), multi-agent methods, Microsoft's TextWorld environment, advanced exploration techniques, and more, you will come away from this book with a deep understanding of the latest innovations in this emerging field. In addition, you will gain actionable insights into such topic areas as deep Q-networks, policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. You will also discover how to build a real hardware robot trained with RL for less than $100 and solve the Pong environment in just 30 minutes of training using step-by-step code optimization. In short, Deep Reinforcement Learning Hands-On, Second Edition, is your companion to navigating the exciting complexities of RL as it helps you attain experience and knowledge through real-world examples.
Table of Contents (28 chapters)
26
Other Books You May Enjoy
27
Index

The battle between equal actors

The final example in this chapter is the situation when one policy drives fighting between two groups of identical agents. This version is implemented in Chapter25/battle_dqn.py. The code is straightforward and won't be put here.

I did only a couple of experiments with the code, so hyperparameters could be improved. In addition, you can experiment with the training process. In the code, both groups are driven by the same policy that we are optimizing, which may not be the best approach. Instead, you can experiment with an AlphaGo Zero style of training, when the best policy is used for one group and another group is driven by the policy that we are optimizing at the moment. Once the best policy starts to consistently lose, it is updated. In this case, the optimized policy may have time to learn all the tricks and weaknesses of the current best policy, which may start an improvement loop.

In my experiments, the training wasn't very stable...