Book Image

Deep Reinforcement Learning Hands-On - Second Edition

By : Maxim Lapan
5 (2)
Book Image

Deep Reinforcement Learning Hands-On - Second Edition

5 (2)
By: Maxim Lapan

Overview of this book

Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. With six new chapters devoted to a variety of up-to-the-minute developments in RL, including discrete optimization (solving the Rubik's Cube), multi-agent methods, Microsoft's TextWorld environment, advanced exploration techniques, and more, you will come away from this book with a deep understanding of the latest innovations in this emerging field. In addition, you will gain actionable insights into such topic areas as deep Q-networks, policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. You will also discover how to build a real hardware robot trained with RL for less than $100 and solve the Pong environment in just 30 minutes of training using step-by-step code optimization. In short, Deep Reinforcement Learning Hands-On, Second Edition, is your companion to navigating the exciting complexities of RL as it helps you attain experience and knowledge through real-world examples.
Table of Contents (28 chapters)
26
Other Books You May Enjoy
27
Index

Gradients

Even with transparent GPU support, all of this dancing with tensors isn't worth bothering with without one "killer feature"—the automatic computation of gradients. This functionality was originally implemented in the Caffe toolkit and then became the de facto standard in DL libraries.

Computing gradients manually was extremely painful to implement and debug, even for the simplest neural network (NN). You had to calculate derivatives for all your functions, apply the chain rule, and then implement the result of the calculations, praying that everything was done right. This could be a very useful exercise for understanding the nuts and bolts of DL, but it wasn't something that you wanted to repeat over and over again by experimenting with different NN architectures.

Luckily, those days have gone now, much like programming your hardware using a soldering iron and vacuum tubes! Now, defining an NN of hundreds of layers requires nothing more than...